

#### MEMORANDUM

Date: Thursday, November 17, 2022

To: Ken Becking, P.Eng.
Director of Public Works
Township of Muskoka Lakes
1 Bailey St., P.O. Box 129
Port Carling, ON P0B 1J0

From: Erik Giles P.Eng., Kelvin Cheung E.I.T.

**CC:** George Liang P.Eng.

RE: Burgess Dam - North Slope Geotechnical Investigation and Slope Stability Analysis

Dear Mr. Becking,

TULLOCH was retained by The Township of Muskoka Lakes (The Client) to perform a site investigation adjacent to the North Slope downstream of the Burgess 1 Generating Station Powerhouse in Bala, Ontario. The scope of work included the advancement of three (3) sampled boreholes on River Street adjacent to the Burgess 1 Generating Station. The purpose of the investigation was to further understand the subsurface soil and shallow bedrock conditions of the area to aid in development of mitigation or rehabilitation options for the slope. Drawing 20-1051-G-01 attached to this memorandum presents a site plan detailing borehole location for the geotechnical investigation completed for this project.

The memorandum will discuss a brief overview of the regional local geology, summary of the investigation methodology and factual findings, followed by a description of the analysis undertaken, and presentation of rehabilitation options. Terminology as it pertains to the borehole logs and memorandum is attached. Detailed borehole logs including individual soil layers and descriptions are also attached to this document, as well as analysis results.

#### 1. INTRODUCTION AND SCOPE

The slope directly north of the Burgess 1 Generating Station is located downstream of the dam and directly downstream of the powerhouse. An existing concrete retaining wall, approximately 7.25 m long, keys into the north side of the powerhouse. Gabion baskets provide support below the retaining wall and extend approximately 11 m beyond the retaining wall limits in the downstream direction. At the toe of the gabions, there appears to be historically placed or dumped rock fill that varies in height and size. Generally, the restricted slope areas near the powerhouse are overgrown, while the sloped area downstream is grass covered.



The scope of work for this memorandum as part of the larger Burgess Rehabilitation Project is outlined below, it includes:

- Geotechnical Site Investigation (including Borehole Drilling, Soil Sampling and Description, etc.)
- Detailed Description of factual subsurface conditions including laboratory testing and standard geotechnical testing
- Slope Stability Analysis including development of preliminary mitigation and rehabilitation options for the North Slope identified above
- Delivery of one (1) Engineering Geotechnical Memorandum for detailing the findings of the analysis and the preliminary options for remediation/rehabilitation of the North Slope based on the soil properties and in-situ groundwater measurements. The recommendations in this memo will be input into the overall preliminary design of the rehab of the Burgess 1 Dam facility.

It is noted that two (2) boreholes were originally proposed on the South side of River St., with one (1) proposed on the north side. Due to hazards associated with overhead powerlines on the South side of River St., all three (3) boreholes were advanced on the north side of River St.

#### 2. REGIONAL GEOLOGY

Based on review of Bedrock Geology and Surficial Geology of Southern Ontario mapping as published by the Ontario Geological Society (OGS), the site surficial geology is comprised of Canadian Shield with formations of Precambrian Bedrock typical within the Muskoka region. The typical geologic formations for the Bala area including hard and smooth pink to grey migmatitic rocks as well as quartzofeldspathic gneisses (OGS 2019). The Burgess 1 Dam is located at the lower section of the Muskoka River watershed near the bottom of Lake Muskoka where regional topography is typically mapped as low local relief varying from plains to undulating hummocky conditions. Overburden in the Bala area is typically sandy and shallow in depth with thick organic deposits found in low lying wetland areas.

#### 3. SITE INVESTIGATION AND METHODOLOGY

The geotechnical investigation program included the following scope of work:

1. Borehole investigations on September 9<sup>th</sup>, 2020, including three (3) sampled boreholes in total, labelled BH-20-01 to BH-20-03.



Bedrock coring was completed in BH-20-01. Core logging of all rock core samples
retrieved during the investigation was completed during the execution of the borehole.
Cores were logged immediately upon retrieval, and measurements for Rock Quality
Designation (RQD) were obtained to determine bedrock quality.

Drawing 20-1051-G-01 attached presents a site plan detailing borehole locations for the geotechnical investigation.

#### 3.1 Geotechnical Borehole Summary

A summary of the boreholes drilled on the site are shown below in Table 3-1.

**Bedrock** Borehole Elevation<sup>1</sup> Northing<sup>1</sup> Easting<sup>1</sup> Borehole No. Depth<sup>2</sup> Depth<sup>2</sup> (m) (m) (m) (mbgs) (mbgs) BH-20-01 609067 4985600 225.1 1.47 4.5 BH-20-02 224.7 609059 4985601  $1.24^{3}$ 1.2 BH-20-03 224.4 509053  $1.78^{3}$ 4985601 1.8

**Table 3-1: Summary of Borehole Information** 

Note(s): Elevation and Borehole Coordinates are shown in UTM 17T Datum. Meters below ground surface (mbgs), rounded to nearest 0.1 m. Inferred bedrock depth.

Boreholes were advanced using a CME55 truck-mounted drill rig owned and operated by Landcore Drilling from Chelmsford, Ontario. The boreholes were advanced using hollow stem augers. Bedrock cores were retrieved within the NW casing via diamond rotary with an NQ2 (76 mm OD) rock core barrel. The rig was equipped with standard soil sampling equipment including an automatic hammer.

During the geotechnical drilling, soil samples were obtained using standard split spoon equipment in conjunction with Standard Penetration Tests (SPT) conducted in accordance with ASTM D1586 procedures. SPT sampling generally occurred at semi continuous 0.76 m intervals. In the bedrock, core samples were generally retrieved in 1.5 m continuous runs with an NQ2 core barrel. The bedrock was logged in the field and Rock Quality Designation (RQD) was calculated on site as the core runs were retrieved.

The drilling and soil sampling programs were directed by a TULLOCH representative, who logged the drilling operations and identified the soil samples as they were retrieved. The recovered soil and rock cores were transported to TULLOCH's CCIL Certified Laboratory in Sault Ste. Marie, ON. Detailed borehole logs are attached to this memorandum.



#### 4. LABORATORY TESTING PROGRAM

A geotechnical laboratory testing program was performed on representative soil and rock core samples in accordance with ASTM standards. Table 4-1 provides a list of the testing program. Detailed laboratory reports for the particle size analysis and unconfined compressive strength of rock tests, can be found attached to this memorandum.

**Table 4-1: Summary of Rock Laboratory Testing Program** 

| Test                                   | Number of Tests | ASTM Standards |
|----------------------------------------|-----------------|----------------|
| Particle Size Analysis                 | 2               | ASTM D422      |
| Unconfined Compressive Strength (Rock) | 2               | ASTM D7012     |

#### 5. SUMMARY OF SUBSURFACE CONDITIONS

#### 5.1 General

The following section outlines the soil deposits/stratigraphy and corresponding depths encountered during the investigation. Further details can be found in the attached borehole logs.

It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. Further, in boreholes where bedrock coring was not undertaken, depths to bedrock are inferred based on auger refusal.

#### 5.2 Stratigraphy Overview

A total of three (3) boreholes were advanced to assess the subsurface conditions on River St. and the adjacent North Slope. All boreholes were advanced to refusal, BH-20-01 was cored to confirm and assess the shallow bedrock conditions. Throughout the boreholes, 125 mm of asphalt was found to overly road base fills consisting of gravelly sand to sand some gravel. In BH-20-01 auger grinding occurred from below the asphalt to bedrock surface at 1.47 m, inferred to be caused by the presence of cobbles and boulders. Bedrock was confirmed at 1.47 m in BH-20-01 and was inferred at 1.2 and 1.8 mbgs in BH-20-02 and -03 respectively. In BH-20-01, bedrock was found to be granitic gneiss, fine to medium grained with angled foliation. The rock was slightly weathered to fresh, and strong with unconfined compression strengths ranging from 100.3 MPa in Run 1 to 130.3 MPa in Run 2.



A simplified stratigraphic profile, and bedrock depths for each borehole is summarized below in Table 5-1. Further details with individual soil layers and characteristics can be viewed in the detailed borehole logs attached to this memorandum.

**Table 5-1: Summary of Soil and Bedrock Conditions** 

| Borehole<br>No. | Ground<br>Surface<br>Elevation <sup>1</sup><br>(m) | Investigation Profile<br>(mbgs)                         | Bedrock<br>Depth<br>(mbgs) <sup>2</sup> | Bedrock<br>RQD<br>Range (%) |
|-----------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------------|-----------------------------|
| BH-20-01        | 225.1                                              | 0.00-0.13, Asphalt<br>0.13-1.47, (SW) Sand, some gravel | 1.47                                    | 56-94                       |
| BH-20-02        | 224.7                                              | 0.00-0.13 Asphalt<br>0.13-1.24, (SW) Sand, some gravel  | 1.24 <sup>3</sup>                       | -                           |
| BH-20-03        | 224.4                                              | 0.00-0.13 Asphalt<br>0.13-1.78, (SW) Sand, some gravel  | 1.78 <sup>3</sup>                       | -                           |

Note(s): <sup>1</sup> Elevation and Borehole Coordinates are shown in UTM 17T Datum. <sup>2</sup> Meters below ground surface (mbgs). <sup>3</sup> Inferred bedrock depth.

#### 5.3 Groundwater Conditions

Groundwater was measured upon completion of each borehole location. A summary of groundwater measurements taken in the boreholes is presented in Table 5-2 below. Groundwater readings were taken down hole upon drilling completion, as such the ground water levels measured on site may not represent static conditions.

**Table 5-2: Water Level Readings Summary** 

| Borehole No. | Surface Elevation<br>(m) | Groundwater Depth <sup>1</sup><br>(mbgs) |
|--------------|--------------------------|------------------------------------------|
| BH-20-01     | 225.1                    | 4.12                                     |
| BH-20-02     | 224.7                    | Not encountered                          |
| BH-20-03     | 224.4                    | Not encountered                          |

Note(s): 1 Meters below ground surface (mbgs)

Groundwater level is subject to seasonal fluctuations with high levels occurring during wet weather conditions in the spring and fall and lower levels during dry weather conditions.

#### 6. NORTH SLOPE STABILITY ANALYSIS

The following sections will discuss the results of the stability modelling of the existing North Slope retaining wall, gabion basket wall and the overall global slope stability. The modelling was based on review of available drawings, topographic survey, and the encountered stratigraphy from the geotechnical investigation.



#### 6.1 Retaining Wall and Gabion Stability Analysis

Concrete retaining wall global stability and gabion wall global and internal stability calculations were conducted for the North Slope area. Using the data collected from the geotechnical investigation, and topographic survey the initial Factor of Safety (FOS) calculations were completed to help frame the recommendations in the following sections. The FOS calculation for stability analysis of the gabion and retaining wall sections are based on the following Equations:

FOS against sliding failure:

$$FOS = \frac{\sum Resisting Froce}{\sum Driving Force}$$
 [1-1]

FOS against overturning failure:

$$FOS = \frac{\sum Resisting\ Moment}{\sum Driving\ Moment}$$
[1-2]

Table 6-1 summarizes the geotechnical parameters used in the stability calculations. Geotechnical parameters were based on the results of the geotechnical investigation and TULLOCH's engineering experience for conservative design purposes.

Table 6-1: Summary of Geotechnical Parameters Stability Calculation<sup>1</sup>

| No. | Type of Material           | Cohesion, c'<br>(kPa) | Internal Friction<br>Angle,φ' (Degree) | Unit Weight, γ'<br>(kN/m³) |
|-----|----------------------------|-----------------------|----------------------------------------|----------------------------|
| 1   | Silty Sand Fill            | 0                     | 35                                     | 19                         |
| 2   | Rockfill                   | 0                     | 38                                     | 20                         |
| 3   | Gabion Basket              | 30                    | 38                                     | 20                         |
| 4   | Retaining Wall Concrete    | -                     | -                                      | 24                         |
| 5   | Concrete to Rock Interface | -                     | 38                                     | -                          |

Note(s): 1-Geotechnical parameters are assumed based on TULLOCH's engineering experience.

#### 6.1.1 Gabion Stability Results

Geometry used in stability analysis of the gabion retaining wall was based on the available historical information and observations during site inspection. For global stability, the external boundary of the gabion retaining wall structure was taken to be from the toe of the gabion basket (Gabion 1) retaining wall to the upstream edge of the upper most gabion basket (Gabion 4). The gabion wall is assumed to be founded on bedrock as no construction records or design drawings were available for the structure. Gabion basket widths are all taken to be 1m for the purposes of the stability calculation based on review of available historical drawings. Active and passive earth pressure coefficients have been modified to consider the sloping backfill geometry of the North



Slope above the gabion wall. Table 6-2 summarizes the required and calculated factors of safety for the stability of the gabion basket retaining wall.

Table 6-2: Calculated FOS for Stability of Gabion Basket Retaining Wall

| Stability Case | Stability Case | FOS  | Minimum Required FOS |
|----------------|----------------|------|----------------------|
| Global         | Sliding        | 1.69 | 1.5                  |
| Global         | Overturning    | 7.64 | 2.0                  |
| Gabion 1       | Sliding        | 1.05 | 1.5                  |
| Gabion 2       | Sliding        | 1.40 | 1.5                  |
| Gabion 3       | Sliding        | 2.15 | 1.5                  |
| Gabion 4       | Sliding        | 5.08 | 1.5                  |

It should be noted that based on the available survey data, traffic loading on top of the slope is within the active wedge zone and therefore is applied to the gabion wall calculations. This is a preliminary assessment with limited investigation data and the geometry of gabion wall inferred from the inspection.

Based on the above results, the stability of the gabion basket retaining wall is in a marginally unsafe condition. The internal stability of the wall does not meet the required safety factor with respect to sliding. The rockfill at the toe of the wall has been ignored in this analysis due to its discontinuous nature, however, in reality it may provide minor support to the lower two gabions. Continued deterioration and movement of the wall will likely cause further instability if left unchecked. Therefore, action is recommended to remediate or replace the Gabion Wall which will be discussed in Section 7.

#### 6.1.2 Existing Concrete Retaining Wall Stability Results

Geometry used in stability analysis of the concrete retaining wall was based on the available historical information and provided drawings as well as observation during site inspection. Based on the historical drawings, the concrete retaining wall is assumed to be founded on bedrock. Table 6-3 summarizes the required and calculated factors of safety for the stability of the retaining wall. A sensitivity analysis was conducted based on the U/S water level of the retaining wall as a subdrain for the wall was not presented in the drawing nor established during the site inspection of the wall. As such in a flooding event similar to 2019 water could build up behind the wall causing additional force on the wall.



Table 6-3: Calculated FOS for Stability of Concrete Retaining Wall

| Stability Case            | Stability Case | FOS | Minimum Required FOS |
|---------------------------|----------------|-----|----------------------|
| U/S water level at        | Sliding        | 2.5 | 1.5                  |
| surface of U/S fill       | Overturning    | 1.7 | 2                    |
| U/S water level 0.5 m     | Sliding        | 3.0 | 1.5                  |
| below surface of U/S fill | Overturning    | 2.2 | 2                    |

It should be noted that based on the available survey data, the traffic loading is within the active wedge zone of the backfill and therefore is applied to the concrete retaining wall calculations. This is a preliminary assessment with limited investigation data and the geometry of concrete wall is inferred from the inspection and available historical information.

Based on the results, the existing concrete retaining wall is typically in a safe condition. However, when the U/S water level is high, i.e., at the surface of the fill, the factor of safety decreases to a marginally safe condition with the required Safety Factor for overturning not being met. This condition likely occurs during period of high precipitation, during the spring freshet and is also likely during an overtopping event. Buildup of water pressure on the upstream side of the wall is expected due to the lack of drains through the retaining wall. It is also noted that a large, open vertical crack exists in the retaining wall which indicates historic movement. Continued deterioration and movement of the wall may cause further reduction in overall stability if left unchecked.

#### 6.2 North Slope Global Stability Analysis

Limit equilibrium global stability analysis was conducted for the North Slope area using Geostudio 2021 R2, version 11.1.3.22700 by GEOSLOPE International Ltd. Survey data collected as part of the 2019 DSR for the Burgess Dam, information from the geotechnical investigation, and limited available historical information, was used to generate analysis geometry and determine a critical section which is shown in Figure 6-1 Below. It should be noted that the bedrock profile in the model is assumed based on local site and regional geology characteristics. The phreatic surface was assumed based on typical powerhouse tailwater elevation and the groundwater conditions encountered during the geotechnical investigation. See Figure 6-1 below.



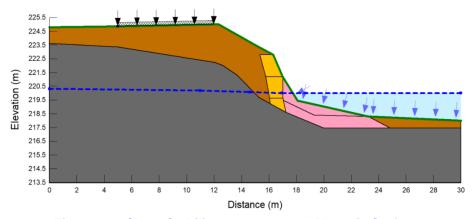



Figure 6-1: Slope Stability Geometry and Phreatic Surface

The slope stability model resulted in a global factor of safety of 1.24, the required factor of safety for the current site conditions is typically 1.5. A sensitivity study where the gabion basket netting has deteriorated was also run, this yielded a factor of safety of 0.61 showing that without a gabion wall in good condition, the slope is unsafe and would likely fail. The condition of the gabion wall below the rockfill at the downstream toe is unknown as it is covered in rock fill, however given its age and the fair condition of the existing gabion wall it is reasonable to assume that the gabions are nearing the end of their service life and it is recommended that they be rehabilitated or replaced.

#### 7. ENGINEERING DISCUSSION

The following section will discuss engineering recommendations for the North Slope and associated structures to be incorporated into the preliminary design of the Burgess 1 Generating Station facility. The Gabion Basket Existing Retaining Wall and overall North Slope will be discussed.

The existing concrete retaining wall is noted to have extended vertical cracks from the crest to the soil contact on the downstream side. Further, typical features of modern retaining walls including subdrain system, and reinforcement in the form of anchor points or dowelling were not apparent on historical drawings or observed during the last DSR conducted in 2019. This indicates that the wall is in fair condition and should be rehabilitated or replaced. Given the planned rehabilitation of the overall facility replacement or remediation of this wall is recommended at this time.

The gabion wall is noted to be in marginally unsafe condition, with some unknowns as to the geometry and foundation. The North Slope is noted to be steep at approximately a 1.75 to 1 (H:V).



The various North Slope stability analyses indicate that the concrete retaining wall, gabion wall and north slope areas are all in a marginally safe condition. Given the above information, the following remediation options are presented for consideration.

#### 7.1 Option 1 – Remediation of Existing Concrete Retaining and Gabion Basket Walls

With the various components of the North Slope area in fair to poor condition, remediation of the existing structure should be considered. This would include remediation of the existing concrete retaining wall and reinforcement and possible replacement of the existing Gabion Wall.

The following recommendations should be implemented for rehabilitation of the North Slope area:

- Subdrains should be installed in the concrete retaining wall to prevent pore pressure buildup on the upstream side, drains should be run into the tailrace area to prevent additional erosion. Surface run-off should be collected and diverted away from the retaining wall section.
- Cracks in the concrete retaining wall should be repaired and if required additional structural reinforcement should be added.
- Anchoring of the concrete retaining wall into the shallow bedrock should be considered to improve stability in overturning and sliding.
- The concrete retaining wall and repair locations should be regularly inspected for further movement over time. A monitoring system could be implemented on the wall to track movement in the future.
- Removal of rockfill at the toe of the gabion wall to inspect the lower Gabions and determine
  their condition, the Gabions could then be remediated or replaced as required. Adequately
  sized rip rap and/or larger gabion stone could be used to prevent erosion and help stabilize
  the North Slope.
- The North Slope should be monitored regularly for signs of instability or movement.

Rehabilitation may extend the service life of the walls and the North Slope; however, it would require regular monitoring and maintenance with potential for eventual replacement as the structures in question are aging and near the end of their service life.



#### 7.2 Option 2 – Replacement of Concrete and Gabion Basket Retaining Walls

With future plans for upgrades to the current Burgess Dam structures including dam raising, powerhouse rehabilitation and improvements to the tailrace, this presents a good opportunity to replace the existing North Slope retaining structures and incorporate a more robust retention system for River Street. Though construction of properly engineered retaining structures requires larger initial investment, it will have reduced maintenance costs, increased safety of the walls and surrounding infrastructure, and minimized risk to power generation in the long term. Given the required rehabilitation of the Generating Station and Dam it may be difficult to replace these North Slope infrastructure at a later point which could increase cost when eventual replacement is required. The following recommendations should be implemented in North Slope area.

- Removal of existing concrete and gabion basket retaining walls.
- Removal of existing fill and native materials to competent bedrock.
- Construction of a concrete training wall dowelled into bedrock and tied into the Powerhouse, extending to the current downstream limit of the gabion wall. The concrete training wall should include subdrains.
- Construction of a replacement concrete retaining wall tied into the powerhouse and founded on bedrock, which should include subdrains.
- Backfilling behind and between all structures should be an approved free draining granular fill such as OPSS Granular B Type II or equivalent backfill compacted to 98% of the Standard Proctor Maximum Dry Density (SPMDD). Placed in compacted lifts of maximum loose lift thickness of 300 mm.
- Regrading of all slopes above the gabion wall to 2:1 (H:V) or less.

Extending a training wall from the powerhouse will prevent erosion of the North Slope and allow for significantly better control of water through the powerhouse particularly during high flow events. Furthermore, the heightened and improved training wall will act as a retaining wall for the North Slope and provide better structural resistance to the North Slope allowing the infrastructure to perform better and mitigate the risks associated with slope failure on the site.

A preliminary drawing will be issued for the training wall as part of the preliminary design memo for the Burgess 1 Generating Station. It should be noted that the recommendations in the memorandum are preliminary in nature. It is recommended that the calculations and remediation



options be re-evaluated in the detailed design phase to ensure that they meet the needs of the Township.

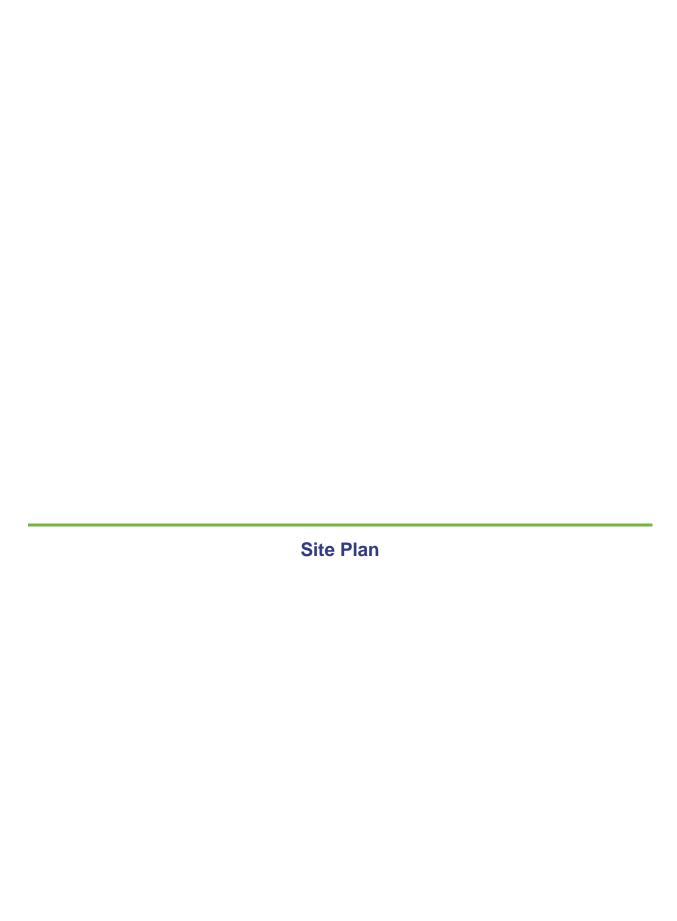
#### 8. CLOSURE

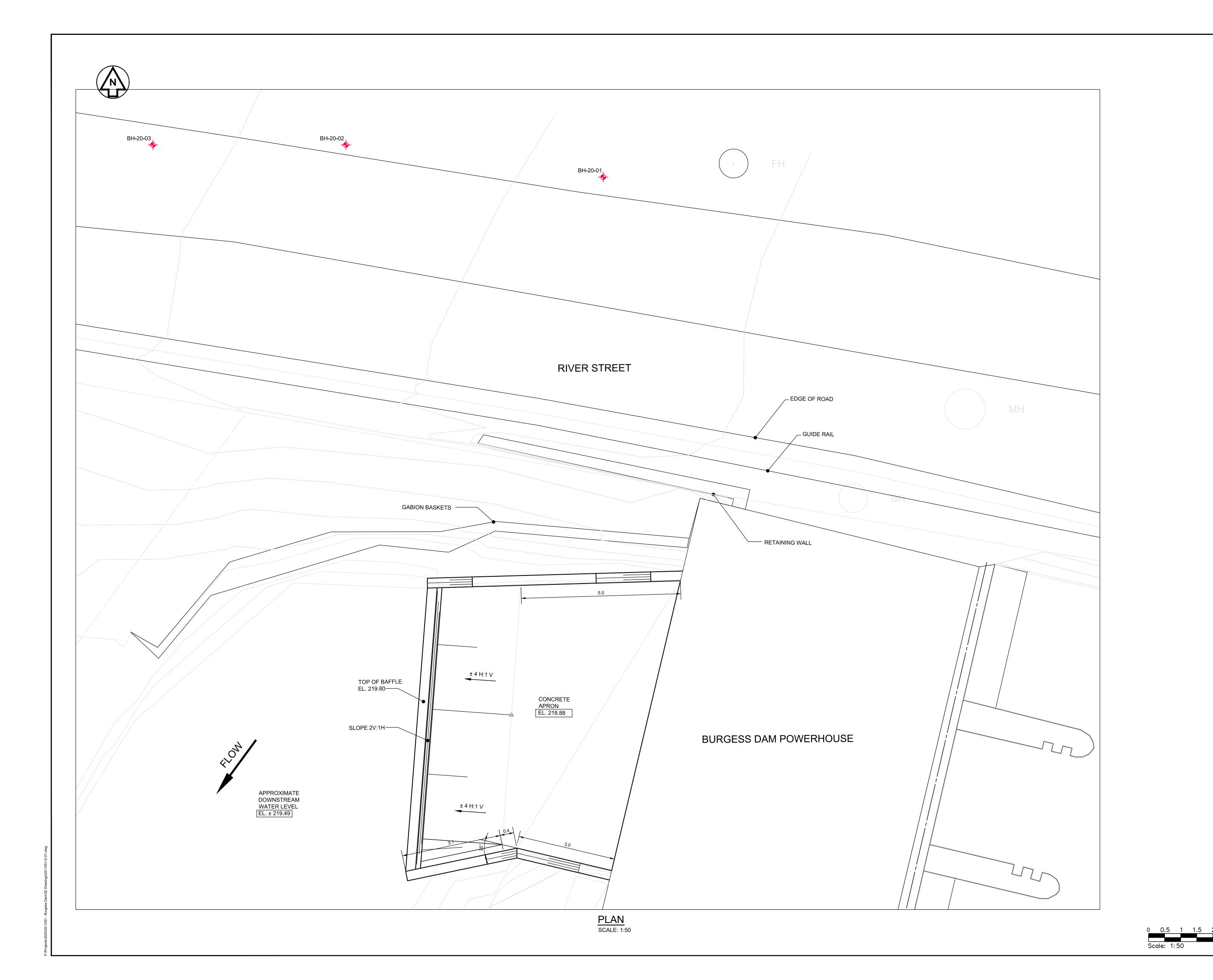
This geotechnical memorandum has been prepared by TULLOCH for the exclusive use of the Client and their authorized agents. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering, for the above noted location. Classification and identification of soils, and geologic units have been based upon commonly accepted methods employed in professional geotechnical practice. No warranty or other conditions, expressed or implied, should be understood. Please refer to the Notice to Reader attached, which is an integral part of this report.

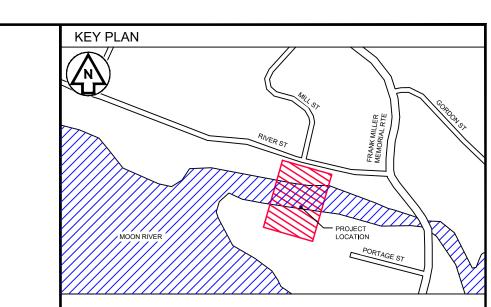
We trust that the information in this report will be sufficient to allow the Client to proceed with the project. Should further elaboration be required for any portion of this project, we would be pleased to assist.

Sincerely,

Kelvin Cheung B.Sc. E.I.T


Engineer in Training


Will


Reviewed By: Erik Giles P.Eng. Geotechnical Engineer



Attachment(s): Site Plan, Terminology, Site Photo Log, Borehole Logs, Rock Core Photos, Laboratory Data, Slope Stability Results, Notice to Reader







# LEGEND:

BOREHOLE LOCATION

# NOTES:

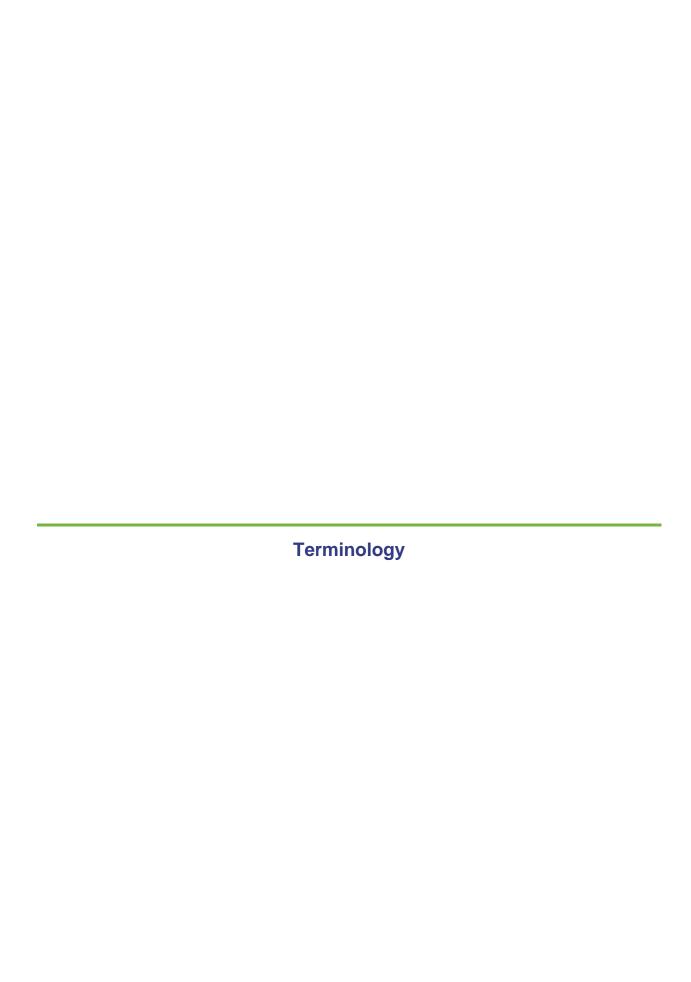
1. CO-ORDINATES ARE IN UTM ZONE 17 (NAD83 CSRS).

# BOREHOLE LOCATIONS

| BOREHOLES | EASTING | NORTHING  | ELEVATION |
|-----------|---------|-----------|-----------|
| BH-20-01  | 609 067 | 4 985 600 | 225.1     |
| BH-20-02  | 609 059 | 4 985 601 | 224.7     |
| BH-20-03  | 609 053 | 4 985 601 | 224.4     |
|           |         |           |           |

A 2022-02-23 KK ISSUED FOR INTERNAL REVIEW No. DATE BY REVISIONS




TOWNSHIP OF MUSKOKA LAKES

LITTLE BURGESS

GENERATING STATION REHAB

NORTH EMBANKMENT GEOTECHNICAL INVESTIGATION PLAN

CHECKED BY: E GILES K KORTEKAAS AS NOTED 2022-02-23 DRAWING No. 20-1051-G-01



# ABBREVIATIONS, TERMINOLOGY AND PRINCIPAL SYMBOLS USED IN REPORT AND BOREHOLE LOGS

#### **BOREHOLES AND TEST PIT LOGS**

#### Soils

| AA | Auger Sample       | w     | Water Content   |
|----|--------------------|-------|-----------------|
| SS | Split Spoon        | wP    | Plastic Limit   |
| TO | Tin-walled Tube    | wL    | Liquid Limit    |
| TP | Thin-walled Piston | V(FV) | Field Vane      |
| WS | Washed Sample      | OR    | Organic Content |
| SC | Soil Core          | GR    | Gravel          |
| BS | Block Sample       | SA    | Sand            |
| WH | Weight of rods &   | SI    | Silt            |
|    | hammer             |       |                 |
| WR | Weight of rods     | CL    | Clay            |

#### **Bedrock**

| TCR | Total Core Recover       | VN | Vein             |
|-----|--------------------------|----|------------------|
| SCR | Solid Core Recovery      | СО | Contact          |
| FI  | Fracture frequency index | KV | Karstic void     |
| HQ  | Rock Core (63.5 mm dia.) | MB | Mechanical Break |
| NQ  | Rock Core (47.6 mm dia.) | PL | Planar           |
| BQ  | Rock Core (36.5 mm dia.) | CU | Curved           |
| JN  | Joint                    | UN | Undulating       |
| FLT | Fault                    | IR | Irregular        |
| SH  | Shear                    | SM | Smooth           |
| K   | Slikensided              | SR | Slightly Rough   |
| BD  | Bedding                  | R  | Rough            |
| FO  | Foliation                | VR | Very rough       |

#### IN SITU SOIL TESTING

Standard Penetration Test (SPT) "N" value. The number of blows required to drive a 51 mm OD split barrel sampler into the soil a distance of 300 mm with a 63.5kg weight free falling a distance of 760 mm after an initial penetration of 150 mm has been achieved.

Dynamic Cone Penetration Test (DCPT) is the number of blows required to drive a cone with a 60 degree apex attached to "A" size drill rods continuously into the soil for each 300 mm penetration with a 63.5 kg weight free falling a distance of 760 mm.

Cone Penetration Test (CPT) is an electronic cone point with a  $10\,\mathrm{cm}$  base area with a  $60\,\mathrm{degree}$  apex pushed through the soil at a penetration rate of  $2\,\mathrm{cm/s}$ .

Field Vane Test (FVT) consists of a vane blade, a set of rods and torque measuring apparatus used to determine the undrained shear strength of cohesive soils.

#### **SOIL DESCRIPTIONS**

The soil descriptions and classifications are based on an expanded Unified Soil Classification System (USCS). The USCS classifies soils on the basis of engineering properties. The system divides soils into three major categories; coarse grained, fine grained and highly organic soils. The soil is then subdivided based on either gradation or plasticity characteristics. The classification excludes particles larger than 75 mm. To aid in quantifying material amounts by weight within the respective grain size fractions the following terms have been included to expand the USCS:

| Soil Classification |                  |  |
|---------------------|------------------|--|
| Clay                | <0.002 mm        |  |
| Silt                | 0.002 to 0.06 mm |  |
| Sand                | 0.075 to 4.75 mm |  |
| Gravel              | 4.751o 75 mm     |  |
| Cobbles             | 75 to 200 mm     |  |
| Boulders            | >200 mm          |  |

| Terminology           | Proportion |
|-----------------------|------------|
| "trace", sand, etc.   | 1%to 10%   |
| "some"                | 10% to 20% |
| Sandy, Gravelly, etc. | 20% to 35% |
| "and"                 | >35%       |
| Ex., SAND, SILT, etc. | >35%       |
|                       |            |

#### Notes:

- Soil properties, such as strength, gradation, plasticity, structure, etc., dictate the soils engineering behaviour over the grain size fractions;
- With the exception of soil samples tested for grain size distribution or plasticity, all soil samples have been classified based on visual and tactile observations and is therefore an approximate description.

The following table outlines the qualitative terms used to describe the relative density condition of cohesionless soil:

#### **Cohesionless Soils**

| Compactness | SPT "N" Value (blows/30cm) |
|-------------|----------------------------|
| Very Loose  | 0 to 4                     |
| Loose       | 5 to 10                    |
| Compact     | 11 to 30                   |
| Dense       | 31 to 50                   |
| Very Dense  | >50                        |

The following table outlines the qualitative terms used to describe the consistency of cohesive soils related to undrained shear strength and SPT, N-Index:

#### **Cohesive Soils**

| Consistency | Undrained Shear<br>Strength (kPa) | SPT "N" Value (blows/30<br>cm) |
|-------------|-----------------------------------|--------------------------------|
| Very Soft   | <12.5                             | < 2                            |
| Soft        | 12.5 to 25                        | 2 to 4                         |
| Firm        | 25 to 50                          | 5 to 8                         |
| Stiff       | 50 to 100                         | 9 to 15                        |
| Very Stiff  | 100 to 200                        | 16 to 30                       |
| Hard        | > 200                             | >30                            |

Note: Utilizing the SPT, "N" value to correlate the consistency and undrained shear strength of cohesive soils is very approximate and needs to be used with caution.

#### **Particle Sizes**

| Constituent | Description              | Size (mm)     | Size (in)     |
|-------------|--------------------------|---------------|---------------|
| BOULDERS    | Not Applicable           | >300          | >12           |
| COBBLES     | Not Applicable           | 75 to 300     | 3 to 12       |
| GRAVEL      | Coarse                   | 19 to 75      | 0.75 to 3     |
|             | Fine                     | 4.75 to 19    | (4) to 0.75   |
| SAND        | Coarse                   | 2.00 to 4.75  | (10) to (4)   |
|             | Medium                   | 0.425 to 2.00 | (40) to (10)  |
|             | Fine                     | 0.075 to0.425 | (200) to (40) |
| SILT/CLAY   | Classified by plasticity | < 0.075       | < (200)       |

#### **ROCK CORING**

Rock Quality Designation (RQD) is an indirect measure of the number of fractures within a rock mass, Deere et al. (1967). It is the sum of sound pieces of rock core equal to or greater than 100 mm recovered from the core run, divided by the total length of the core run, expressed as a percentage. If the core section is broken due to mechanical or handling, the pieces are fitted together and if 100 mm or greater included in the total sum.

#### **Intact Rock Strength**

| Intact Strength<br>(Mpa) | Description             |
|--------------------------|-------------------------|
| < 1                      | Extremely low strength  |
| 1-5                      | Very low strength       |
| 5-25                     | Low strength            |
| 25-50                    | Medium strength         |
| 50-100                   | High strength           |
| 100-250                  | Very high strength      |
| >250                     | Extremely high strength |

#### **Rock Mass Quality**

| RQD Classification | RQD Value (%) |
|--------------------|---------------|
| Very Poor Quality  | <25           |
| Poor Quality       | 25 to 50      |
| Fair Qualty        | 50 to 75      |
| Good Quality       | 75 to 90      |
| Excellent Quality  | 90 to 100     |

#### **Rock Mass Weathering**

| ROCK Mass Weathering    |                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Term                    | Description                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| Unweathered<br>(Fresh)  | No visible sign of material weathering to discoloration on major discontinuity surfaces.                                                                                                      |  |  |  |  |  |  |  |  |  |
| Slightly<br>Weathered   | Discoloration indicates weathering of rock material and discontinuity of surfaces. All the rock material may be discolored by weathering and may be somewhat weaker than its fresh condition. |  |  |  |  |  |  |  |  |  |
| Moderatly<br>Weathered  | Less than half the rock material is decomposed and/or disintegrates to soil. Fresh or discolored rock is present either as a continuous frame work of as core stones.                         |  |  |  |  |  |  |  |  |  |
| Highly<br>Weathered     | More than half the rock material is decomposed and/or disintegrated to soil. Fresh or discolored rock is present either as a discontinuous frame work or as core stones.                      |  |  |  |  |  |  |  |  |  |
| Completely<br>Weathered | All rock material is decomposed and/or disintegrated to soil. The original mass structure is largely intact.                                                                                  |  |  |  |  |  |  |  |  |  |
| Residual Soil           | All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.         |  |  |  |  |  |  |  |  |  |

#### **Joint and Foliation Spacing**

| Description      | Spacing          |  |  |  |  |  |  |  |
|------------------|------------------|--|--|--|--|--|--|--|
| Very Wide        | Greater than 3 m |  |  |  |  |  |  |  |
| Wide             | 1 m to 3 m       |  |  |  |  |  |  |  |
| Moderately Close | 0.3 m to 1 m     |  |  |  |  |  |  |  |
| Close            | 50 mm to 300 mm  |  |  |  |  |  |  |  |
| Very Close       | Less than 50 mm  |  |  |  |  |  |  |  |

#### **Bedding Thickness**

| Description      | Spacing          |
|------------------|------------------|
| Very thick       | Greater than 2 m |
| Thick            | 0.6 m to 2 m     |
| Medium           | 0.2 m to 0.6 m   |
| Thin             | 60 mm to 0.2 m   |
| Very thin        | 20 mm to 60 mm   |
| Laminated        | 6 to 20 mm       |
| Thinly Laminated | Less than 6 mm   |

#### **SYMBOLS**

#### Genera

w<sub>N</sub> Natural water content within the soil sample

γ Unit weight

 $\gamma'$  Effective unit weight

 $\gamma_D$  Dry unit weight

 $\gamma_{SAT}$  Saturated unit weight

ρ Density

 $\rho_s$  Density of solid particles

 $ho_w$  Density of water

 $ho_{\scriptscriptstyle D}$  Dry density

 $ho_{\mathit{SAT}}$  Saturated density

e Void ratio

n Porosity

S Degree of saturation

 $E_{50}$  Fifty percent secant modulus

#### Consistency

 $w_L$  Liquid Limit

w<sub>P</sub> Plastric Limit

I<sub>P</sub> Plasticity Index

w<sub>s</sub> Shrinkage limit

 $I_L$  Liquidity index

Ic Consistency index

e<sub>max</sub> Void ratio in loosest state

 $e_{\text{min}}\ \ \text{Void}$  ratio in densest state

Density index (formerly relative density)

#### **Shear Strength**

Su Undrained shear strength parameter (total stress)

 $c^\prime$  Effective cohesion intercept

 $\phi'$  Effective friction angle

 $au_{\it R}$  Peak shear strength

 $au_{\it R}$  Residual shear strength

 $\delta$  Angle of interface friction

 $\mu$  Coefficient of friction = tan  $\phi'$ 

#### Consolidation

C<sub>c</sub> Compression index (normally consolidated range)

C<sub>r</sub> Recompression index (over consolidated range)

m<sub>v</sub> Coefficient of volume change

c<sub>v</sub> Coefficient of consolidation

T<sub>v</sub> Time factor (vertical direction)

U Degree of consolidation

 $\sigma_v'$  Effictive overburden pressure

OCR Overconsolidation ratio

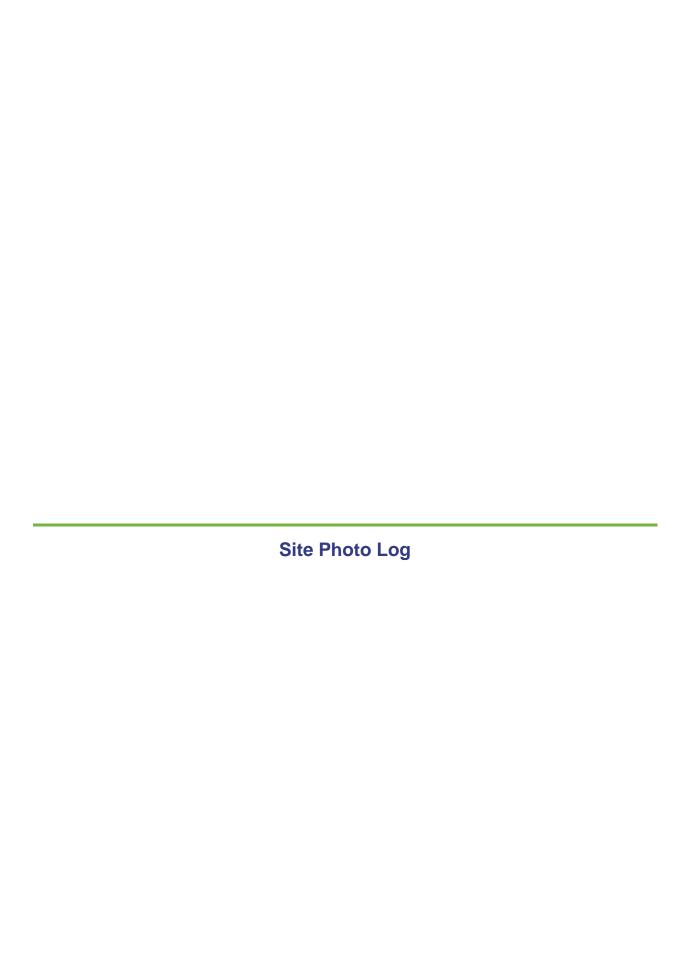





Photo 1: General investigation area, note low powerlines on left side of photo which prevented drilling closer to the North Slope. Powerhouse on left.



Photo 2: Retaining wall near road surface, gabion basket wall at slope toe. Powerhouse on right. Image looking from downstream of powerhouse to upstream.

CLIENT
Township of Muskoka Lakes

Burgess Dam – North Slope Investigation

CONSULTANT



| YYYY-MM-DD | 2022-03-08 |
|------------|------------|
| PREPARED   | K. Cheung  |
| DESIGNED   | K. Cheung  |
| REVIEWED   | E.Giles    |
| APPROVED   |            |

Geotechnical Investigation - Site Photos

PROJECT NO. **20-1051** 

Phase/Task

Rev 0

C1



Photo 3: View of retaining wall behind the fence from road surface.



Photo 4: North Slope with powerhouse and tailrace in background on right. Note abrupt slope change where gabion basket wall exists at break in slope.

CLIENT
Township of Muskoka Lakes

Burgess Dam – North Slope Investigation

CONSULTANT



| YYYY-MM-DD | 2022-03-08 |
|------------|------------|
| PREPARED   | K. Cheung  |
| DESIGNED   | K. Cheung  |
| REVIEWED   | E.Giles    |
| APPROVED   |            |

Geotechnical Investigation - Site Photos

PROJECT NO. **20-1051** Phase/Task

C2

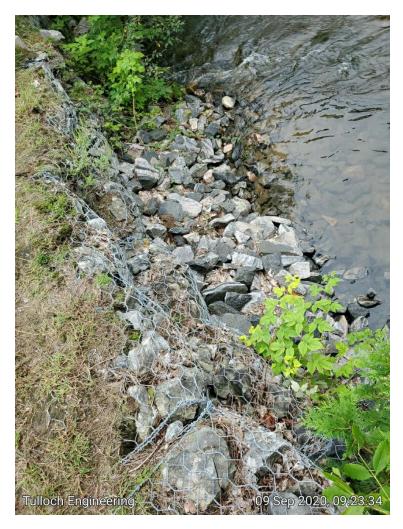


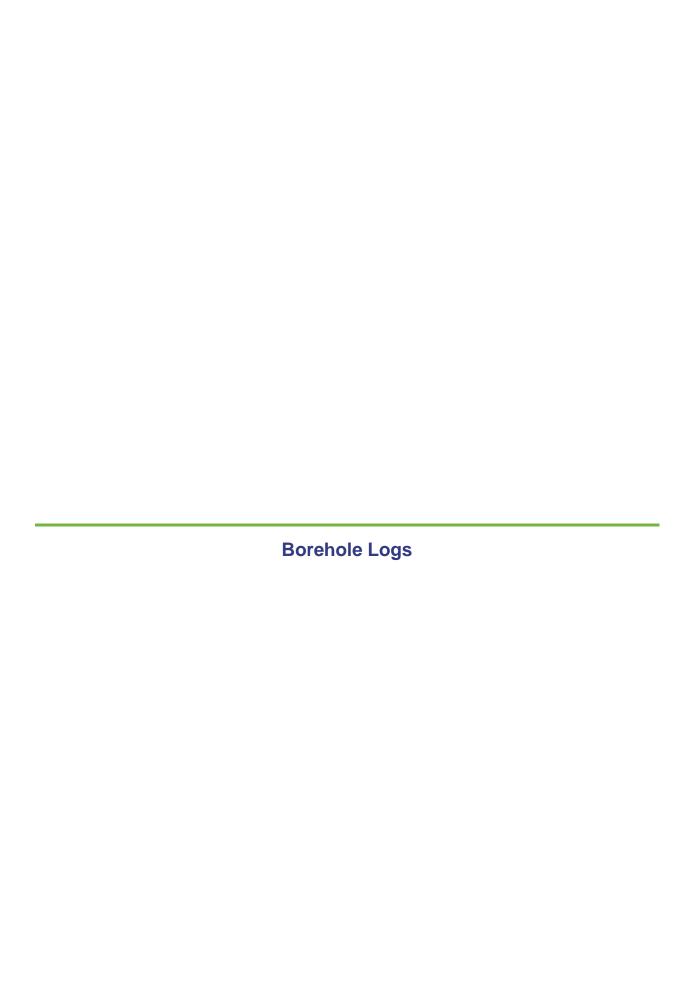

Photo 5: Gabion wall at toe of North Slope. Note rockfill located at toe of gabion wall above tailrace water level.

Township of Muskoka Lakes

PROJECT
Burgess Dam – North Slope Investigation

CONSULTANT




| YYYY-MM-DD | 2022-03-08 |
|------------|------------|
| PREPARED   | K. Cheung  |
| DESIGNED   | K. Cheung  |
| REVIEWED   | E.Giles    |
| APPROVED   |            |

Geotechnical Investigation – Site Photos

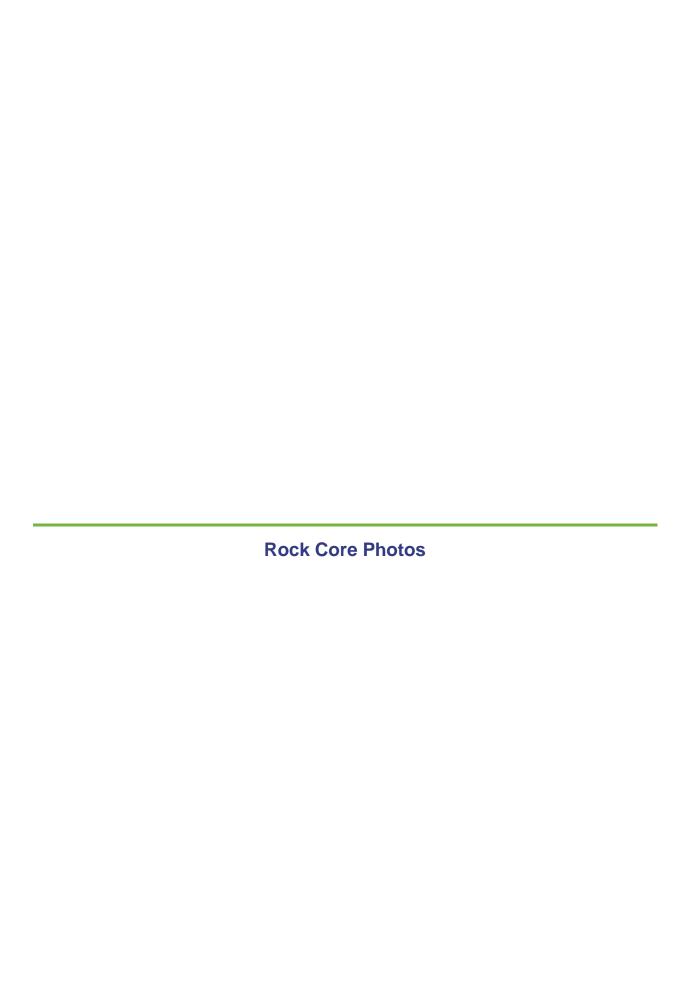
PROJECT NO. **20-1051** 

Phase/Task Rev 0

FIGURE C3



| TULLOCH                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | RECORD OF BOREHOLE No 20-01 1 |           |            |                            |                        |              |                                             |                               |                        |        |             |   |                    |                         |        |                |                                                                             |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|-----------|------------|----------------------------|------------------------|--------------|---------------------------------------------|-------------------------------|------------------------|--------|-------------|---|--------------------|-------------------------|--------|----------------|-----------------------------------------------------------------------------|--|--|--|--|
| JOB NUMBER 20-1051 LOCATION River Street, Bala                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                               |           |            |                            |                        |              |                                             |                               |                        |        |             |   |                    |                         |        |                |                                                                             |  |  |  |  |
| CLIENT Township of MusibAFLIMes Ground SurfaceBOREHOLE TYPE HSA/NQ Diamond Rotary COMPILED BY JM  DRILLER Landcore Drilling DATE 2020.09.09 NORTHING 4985600 EASTING 609067 CHECKED BY EG |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                               |           |            |                            |                        |              |                                             |                               |                        |        |             |   |                    |                         |        |                |                                                                             |  |  |  |  |
| DIVIL                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D/ (1      |                               |           |            |                            | . NOI                  | DYNA         | MIC CO                                      | NE PEN                        | IETRAT                 |        | IING        | _ | 003007             |                         | OFFICE | SKED D1        |                                                                             |  |  |  |  |
| ELEV<br>DEPTH                                                                                                                                                                             | SOIL PROFILE  DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STRAT PLOT | NUMBER                        | AMPL TYPE | "N" VALUES | GROUND WATER<br>CONDITIONS | DЕРТН (M)              | SHEA<br>O PO | TANCE<br>20 4<br>AR STI<br>DCKET<br>UICK TE | 0 6<br>RENG<br>PEN<br>RIAXIAL | 0 8<br>TH kP<br>+<br>× | LAB VA | VANE<br>ANE |   | CONT<br>V<br>————C | TENT<br>V<br>><br>NTENT |        | UNIT<br>WEIGHT | REMARKS<br>&<br>GRAIN SIZE<br>DISTRIBUTION<br>(%)                           |  |  |  |  |
| 0.00<br>-8:99                                                                                                                                                                             | Ground Surface<br>125 mm ASPHALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                               |           |            |                            |                        | 2            | 20 4                                        | 0 6                           | 0 8                    | 0 10   | 00          | 2 | 0 4                | 0 6                     | 0      | kN/m³          | GR SA SI CL<br>Grinding augers                                              |  |  |  |  |
| 0.13                                                                                                                                                                                      | FILL - (SW) SAND, fine to coarse grained, gravelly to some fine to coarse gravel, sub-angular, trace non-plastic fines, brown (PAVEMENT STRUCTURE, Base, Subbase); non-cohesive, moist, dense to compact                                                                                                                                                                                                                                                                                                         |            | 1                             | SS        | 31         |                            | -                      |              |                                             |                               |                        |        |             |   |                    |                         |        |                | from 0.125 m to<br>1.47 m. Inferred<br>cobbles to<br>boulders.<br>12 82 (6) |  |  |  |  |
|                                                                                                                                                                                           | Note: - Auger refusal encountered at<br>1.47 m.<br>- Landcore Drilling switched to NW                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 2                             | SS        | 20         |                            | 1—<br>1—               |              |                                             |                               |                        |        |             |   |                    |                         |        |                | 30 58 (12)                                                                  |  |  |  |  |
| -1.47<br>1.47                                                                                                                                                                             | casing and core barrel.  BEDROCK - Granitic Gneiss, fine to medium grained, angled foliation, medium to coarse grained feldspar intrusion, natural vertical and angular jointing with muscovite and calcite deposits within discontinuities, angular and horizontal fractures throughout, slightly weathered, strong rock  Note: - SILT infiltration in discontinuity near 2.59 m  Run 1: RQD: 83/147 = 56% TCR: 138/147 = 94% SCR: 105/147 = 71%                                                                |            | Run<br>1                      | NQ        |            |                            | -<br>2—<br>-<br>-<br>- |              |                                             |                               |                        |        |             |   |                    |                         |        |                | Rock Core<br>Compressive<br>Strength at 2.3<br>mbgs = 100.3<br>MPa          |  |  |  |  |
| 2.95                                                                                                                                                                                      | BEDROCK - Granitic gneiss, fine to medium grained, angled foliation, medium to coarse grained feldspar intrusion, angular and horizontal fractures throughout, unweathered, strong rock  Run 2:  RQD: 145/155 = 94%  TCR: 155/155 = 100%  SCR: 155/155 = 100%                                                                                                                                                                                                                                                    |            | Run<br>2                      | NQ        |            | Σ                          | 3— 4—                  |              |                                             |                               |                        |        |             |   |                    |                         |        |                | Rock Core<br>Compressive<br>Strength at 3.9<br>mbgs = 130.3<br>MPa          |  |  |  |  |
| 4.50                                                                                                                                                                                      | END OF BOREHOLE  Note: - Groundwater was measured at 4.12 m upon completion of investigation. It should be noted that groundwater may not be stabilized upon completion of borehole A reduced section sub broke during the attempted removal of a 1.54 m long section of streel casing which became ceased within the borehole. Landcore Drilling was unable to remove this ceased section of casing, therefore it was hammered to 0.2 m below top of asphalt surface, backfilled and abandoned in the borehole. |            |                               |           |            |                            |                        |              |                                             |                               |                        |        |             |   |                    |                         |        |                |                                                                             |  |  |  |  |


1. SOIL REPORT (DEPTH) (DEFAULT) PROJECT FILE (20-1051 - BURGESS DAM NORTH SLOPE).GPJ ONTARIO MTO.GDT 22-3-1

| TULLOCH<br>ENGINEERING |                                                                                                                                                                                                                                                             | RECORD OF BOREHOLE No 20-02 1 OF 1   |        |         |            |                            |                  |                                                                                             |       |      |        |      |             |                |               | METRIC                   |                       |          |                                        |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|---------|------------|----------------------------|------------------|---------------------------------------------------------------------------------------------|-------|------|--------|------|-------------|----------------|---------------|--------------------------|-----------------------|----------|----------------------------------------|--|
|                        | NUMBER 20-1051                                                                                                                                                                                                                                              | LOCATION River Street, Bala, Ontario |        |         |            |                            |                  |                                                                                             |       |      |        |      |             |                |               |                          | ORIGINATED BY JM      |          |                                        |  |
|                        | NT_Township of Mus <b>DAa Lake</b> sGround Sufa                                                                                                                                                                                                             |                                      |        |         |            |                            |                  |                                                                                             |       |      |        |      |             |                |               |                          |                       | PILED BY |                                        |  |
| DRILI                  | _ER_Landcore Drilling                                                                                                                                                                                                                                       | DAT                                  | E _2   | 2020.09 | .09        |                            | NOF              |                                                                                             |       |      |        |      | TING        | _              | 609067        | ,                        | CHEC                  | CKED BY  | EG                                     |  |
|                        | SOIL PROFILE                                                                                                                                                                                                                                                | _                                    | S      | SAMPL   | ES         | S                          |                  | RESIS                                                                                       | TANCE | PLOT | NETRAT | IION |             | PLASTI         | C NATU        | JRAL<br>TURE             | LIQUID                | ᆫ붇       | REMARKS                                |  |
| ELEV<br>DEPTH          | DESCRIPTION                                                                                                                                                                                                                                                 | STRAT PLOT                           | NUMBER | TYPE    | "N" VALUES | GROUND WATER<br>CONDITIONS | <b>DEPTH (M)</b> | 20 40 60 80 100  SHEAR STRENGTH kPa  ○ POCKET PEN + FIELD VANE  ○ QUICK TRIAXIAL × LAB VANE |       |      |        |      | VANE<br>ANE | W <sub>P</sub> | CON' V TER CC | TENT<br>V<br>D<br>DNTENT | LIQUID LIMIT WL HOUSE |          | &<br>GRAIN SIZE<br>DISTRIBUTION<br>(%) |  |
| 0.00                   | Ground Surface<br>125 mm ASPHALT                                                                                                                                                                                                                            |                                      |        |         |            |                            |                  | 2                                                                                           | 0 4   | 0 6  | 0 8    | 0 10 | 00          | 2              | 0 4           | 0 6                      | 0                     | kN/m³    | GR SA SI CL                            |  |
| -0.13<br>0.13          | FILL - (SW) SAND, fine to coarse grained, gravelly to some fine to coarse gravel, sub-angular, trace non-plastic fines, brown (PAVEMENT STRUCTURE, Base, Subbase); non-cohesive, moist, dense to compact                                                    |                                      | 1      | ss      | 29         |                            | _                |                                                                                             |       |      |        |      |             |                |               |                          |                       |          |                                        |  |
| -1.24                  | END OF PODELIOLE                                                                                                                                                                                                                                            |                                      | 2      | SS      | >50/2"     |                            | 1—               |                                                                                             |       |      |        |      |             |                |               |                          |                       |          |                                        |  |
| 1.24                   | END OF BOREHOLE  Note: - Spoon and auger refusal encountered at 1.24 m. Inferred bedrock surface - Groundwater was not encountered upon completion of investigation. It should be noted that groundwater may not be stabilized upon completion of borehole. |                                      |        |         |            |                            |                  |                                                                                             |       |      |        |      |             |                |               |                          |                       |          |                                        |  |

1. SOIL REPORT (DEPTH) (DEFAULT) PROJECT FILE (20-1051 - BURGESS DAM NORTH SLOPE).GPJ ONTARIO MTO.GDT 22-3-1

| TULLOCH       |                                                                                                                                                                                                                                                            |            |        | RE      | ECO        | RD O                       | F BC             | REH            | OLE             | No                     | 20-0            | 3                                      |             | 1 OF 1 METRIC      |                     |                         |                             |          |                                                                                                                              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|---------|------------|----------------------------|------------------|----------------|-----------------|------------------------|-----------------|----------------------------------------|-------------|--------------------|---------------------|-------------------------|-----------------------------|----------|------------------------------------------------------------------------------------------------------------------------------|
|               | NUMBER 20-1051                                                                                                                                                                                                                                             | LOC        | ATIC   | DN _    | River S    | treet, Bal                 | a, Ontar         | io             |                 |                        |                 |                                        |             |                    |                     |                         | ORIG                        | INATED   | ВҮ <u>Јм</u>                                                                                                                 |
|               | Township of Mus ROAT LAMes Ground Suface                                                                                                                                                                                                                   |            |        |         | _          |                            |                  |                |                 |                        |                 |                                        |             |                    |                     |                         |                             | PILED BY |                                                                                                                              |
| DRILL         | .ER_Landcore Drilling                                                                                                                                                                                                                                      | DAT        | E _2   | 020.09. | .09        |                            | NOF              |                |                 |                        |                 |                                        | ING         | _                  | 609067              | ,                       | CHEC                        | CKED BY  | EG                                                                                                                           |
|               | SOIL PROFILE                                                                                                                                                                                                                                               |            | S      | AMPL    | ES         | SER                        |                  | DYNA!<br>RESIS | MIC CO<br>TANCE | NE PEN<br>PLOT         | NETRAT          | TION                                   |             | PLASTI             | C NATU              | JRAL                    | LIQUID                      | ᆫ누       | REMARKS                                                                                                                      |
| ELEV<br>DEPTH | DESCRIPTION  Crowd Surface                                                                                                                                                                                                                                 | STRAT PLOT | NUMBER | TYPE    | "N" VALUES | GROUND WATER<br>CONDITIONS | <b>DEPTH (M)</b> | SHEA<br>O PO   | CKET            | RENG<br>PEN<br>RIAXIAL | TH kP<br>+<br>× | 0 10<br>a<br>FIELD V<br>LAB VA<br>0 10 | /ANE<br>.NE | W <sub>P</sub> WA1 | CONT<br>V<br>TER CC | TENT<br>v<br>><br>NTENT | LIMIT<br>W <sub>L</sub><br> | ZZ UNIT  | & GRAIN SIZE DISTRIBUTION (%) GR SA SI CL                                                                                    |
| 0.00          | Ground Surface<br>125 mm ASPHALT                                                                                                                                                                                                                           |            |        |         |            |                            |                  |                |                 |                        |                 |                                        |             |                    |                     |                         |                             | KI W/III | OR OA OI OL                                                                                                                  |
| -0.13<br>0.13 | FILL - (SW) SAND, fine to coarse grained, gravelly to some fine to coarse gravel, sub-angular, trace non-plastic fines, brown (PAVEMENT STRUCTURE, Base, Subbase); non-cohesive, moist, dense to compact                                                   |            | 1      | SS      | 33         |                            | -                |                |                 |                        |                 |                                        |             |                    |                     |                         |                             |          | Grinding<br>experienced<br>throughout auger<br>advancement<br>from 0.125 m to<br>1.78 m. Inferred<br>cobbles to<br>boulders. |
|               |                                                                                                                                                                                                                                                            |            | 2      | SS      | 30         |                            | 1-               |                |                 |                        |                 |                                        |             |                    |                     |                         |                             |          |                                                                                                                              |
|               |                                                                                                                                                                                                                                                            |            |        |         |            |                            | -                |                |                 |                        |                 |                                        |             |                    |                     |                         |                             |          |                                                                                                                              |
| -1.78         |                                                                                                                                                                                                                                                            |            | 3      | SS      | >50/<br>2" |                            | -                |                |                 |                        |                 |                                        |             |                    |                     |                         |                             |          |                                                                                                                              |
| 1.78          | END OF BOREHOLE Note: - Spoon and auger refusal encountered at 1.78 m. Inferred bedrock surface - Groundwater was not encountered upon completion of investigation. It should be noted that groundwater may not be stabilized upon completion of borehole. |            |        |         |            |                            |                  |                |                 |                        |                 |                                        |             |                    |                     |                         |                             |          |                                                                                                                              |

1. SOIL REPORT (DEPTH) (DEFAULT) PROJECT FILE (20-1051 - BURGESS DAM NORTH SLOPE).GPJ ONTARIO MTO.GDT 22-3-1



# Retrieved Rock Core at Borehole Location

BH-20-01: Run 1 and Run 2 - 1.47 m to 4.50 m

### Top of Bedrock



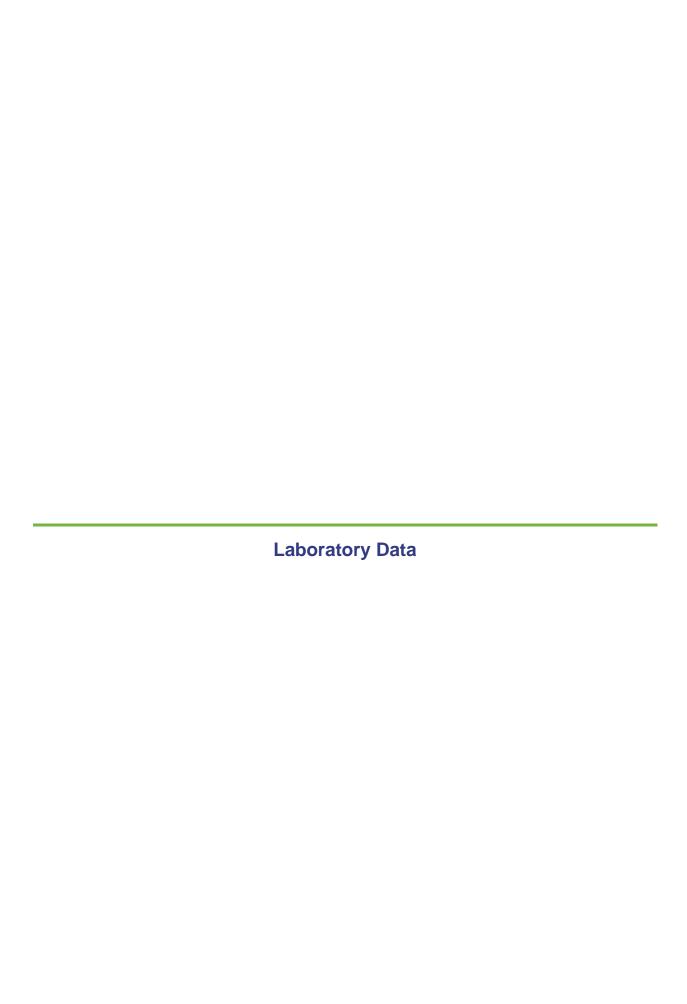
**Bottom of Core** 

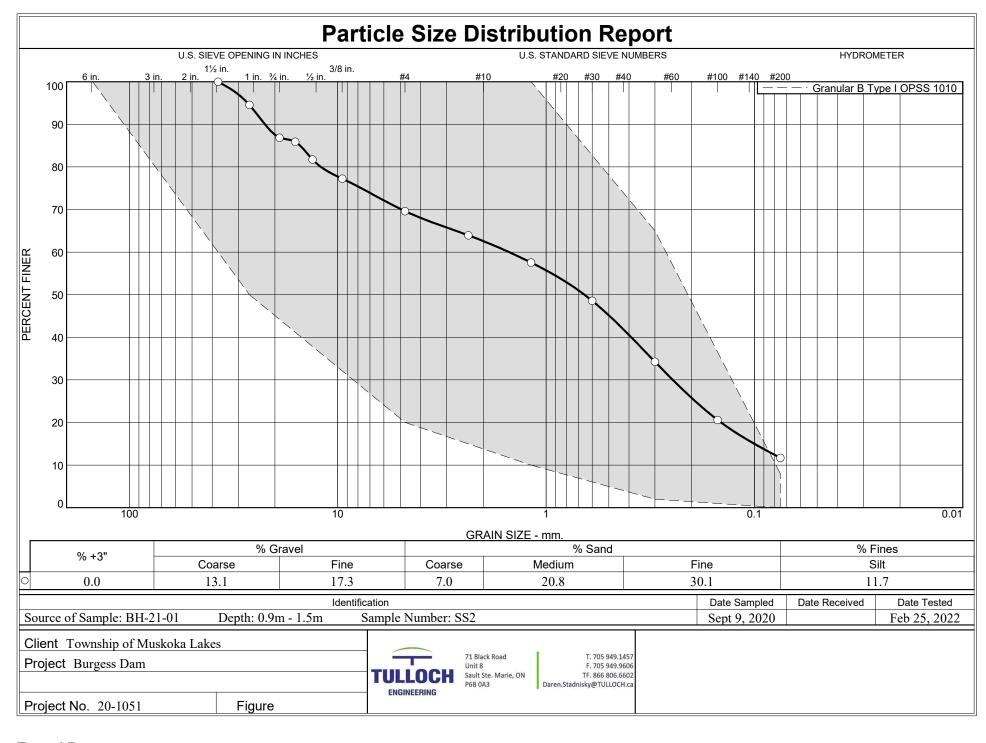
**E-1** 

Township of Muskoka Lakes

PROJE

Burgess Dam – North Slope Investigation


CONSULTANT




| YYYY-MM-DD | 2022-03-08 |   |
|------------|------------|---|
| PREPARED   | KC         |   |
| DESIGN     | KC         |   |
| REVIEW     | EG         |   |
| APPROVED   | EG         | _ |

Rock Core Photos – BH-20-01

PROJECT No. Phase / Task Rev. **20-1051 0** 





#### 2022-03-01

#### **GRAIN SIZE DISTRIBUTION TEST DATA**

Client: Township of Muskoka Lakes

Project: Burgess Dam
Project Number: 20-1051
Location: BH-21-01

**Depth:** 0.9m - 1.5m **Sample Number:** SS2

Tested by: T. Linley

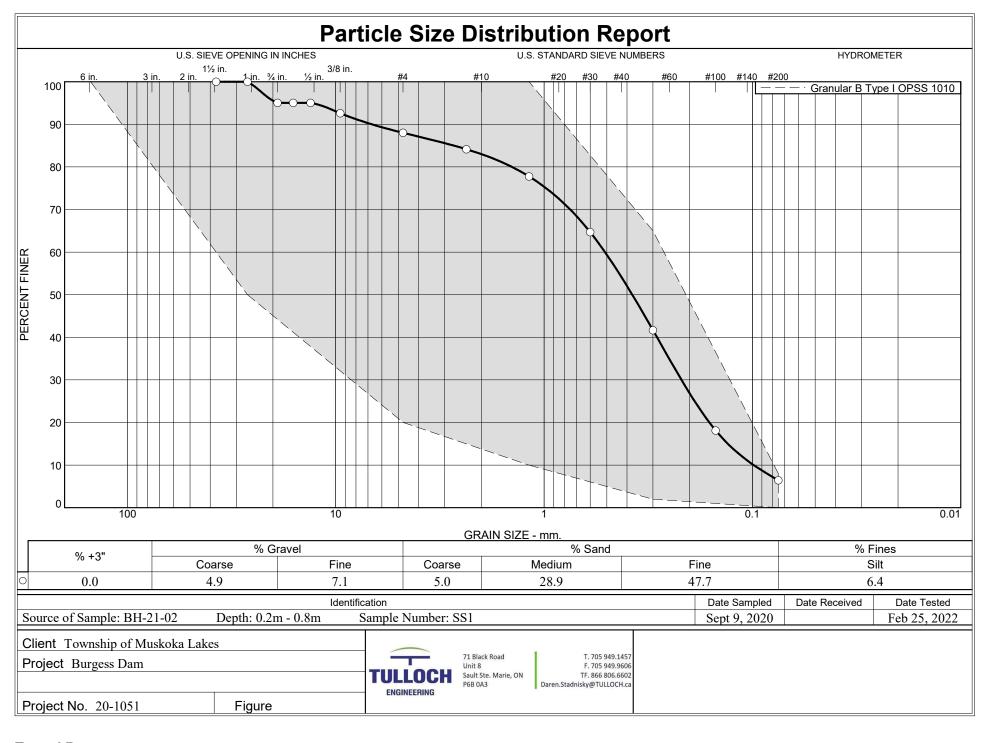
Material specification: Granular B Type I OPSS 1010

#### Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 778.00

Tare Wt. = 163.30

Minus #200 from wash = 8.2%


| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer | Lower<br>Spec.<br>Limit, % | Upper<br>Spec.<br>Limit, % | Deviation<br>From<br>Spec., % |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|----------------------------|----------------------------|-------------------------------|
| 832.80                               | 163.30          | 37.5mm                   | 0.00                          | 0.00                       | 100.0            |                            |                            |                               |
|                                      |                 | 26.5mm                   | 36.60                         | 0.00                       | 94.5             | 50.0                       | 100.0                      |                               |
|                                      |                 | 19mm                     | 51.40                         | 0.00                       | 86.9             |                            |                            |                               |
|                                      |                 | 16mm                     | 6.30                          | 0.00                       | 85.9             |                            |                            |                               |
|                                      |                 | 13.2mm                   | 28.00                         | 0.00                       | 81.7             |                            |                            |                               |
|                                      |                 | 9.5mm                    | 30.10                         | 0.00                       | 77.2             |                            |                            |                               |
|                                      |                 | #4                       | 51.10                         | 0.00                       | 69.6             | 20.0                       | 100.0                      |                               |
|                                      |                 | #8                       | 38.00                         | 0.00                       | 63.9             |                            |                            |                               |
|                                      |                 | #16                      | 42.80                         | 0.00                       | 57.5             | 10.0                       | 100.0                      |                               |
|                                      |                 | #30                      | 60.10                         | 0.00                       | 48.6             |                            |                            |                               |
|                                      |                 | #50                      | 95.80                         | 0.00                       | 34.2             | 2.0                        | 65.0                       |                               |
|                                      |                 | #100                     | 91.50                         | 0.00                       | 20.6             |                            |                            |                               |
|                                      |                 | #200                     | 59.60                         | 0.00                       | 11.7             | 0.0                        | 8.0                        | +3.7                          |

#### **Fractional Components**

| Cabbles |      |      |      |        | Sa     | nd   | Fines |      |      |       |
|---------|------|------|------|--------|--------|------|-------|------|------|-------|
| Copples |      |      |      | Coarse | Medium | Fine | Total | Silt | Clay | Total |
| 0.0     | 13.1 | 17.3 | 30.4 | 7.0    | 20.8   | 30.1 | 57.9  |      |      | 11.7  |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 | 0.1001          | 0.1446          | 0.2464          | 0.3900          | 0.6544          | 1.5061          | 12.0512         | 15.1429         | 22.3752         | 27.0349         |

Fineness Modulus 3.41



#### **GRAIN SIZE DISTRIBUTION TEST DATA**

**Client:** Township of Muskoka Lakes

Project: Burgess Dam
Project Number: 20-1051
Location: BH-21-02

Depth: 0.2m - 0.8m Sample Number: SS1

Tested by: T. Linley

Material specification: Granular B Type I OPSS 1010

#### Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 879.00

**Tare Wt. =** 151.50

Minus #200 from wash = 4.1%

| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer | Lower<br>Spec.<br>Limit, % | Upper<br>Spec.<br>Limit, % | Deviation<br>From<br>Spec., % |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|----------------------------|----------------------------|-------------------------------|
| 910.20                               | 151.50          | 37.5mm                   | 0.00                          | 0.00                       | 100.0            |                            |                            |                               |
|                                      |                 | 26.5mm                   | 0.00                          | 0.00                       | 100.0            | 50.0                       | 100.0                      |                               |
|                                      |                 | 19mm                     | 37.60                         | 0.00                       | 95.0             |                            |                            |                               |
|                                      |                 | 16mm                     | 0.00                          | 0.00                       | 95.0             |                            |                            |                               |
|                                      |                 | 13.2mm                   | 0.00                          | 0.00                       | 95.0             |                            |                            |                               |
|                                      |                 | 9.5mm                    | 18.50                         | 0.00                       | 92.6             |                            |                            |                               |
|                                      |                 | #4                       | 34.90                         | 0.00                       | 88.0             | 20.0                       | 100.0                      |                               |
|                                      |                 | #8                       | 29.30                         | 0.00                       | 84.1             |                            |                            |                               |
|                                      |                 | #16                      | 48.50                         | 0.00                       | 77.8             | 10.0                       | 100.0                      |                               |
|                                      |                 | #30                      | 99.30                         | 0.00                       | 64.7             |                            |                            |                               |
|                                      |                 | #50                      | 174.50                        | 0.00                       | 41.7             | 2.0                        | 65.0                       |                               |
|                                      |                 | #100                     | 178.70                        | 0.00                       | 18.1             |                            |                            |                               |
|                                      |                 | #200                     | 88.80                         | 0.00                       | 6.4              | 0.0                        | 8.0                        |                               |

#### **Fractional Components**

| Cobbles |                   |     |        | Sa     | nd   | Fines |      |      |       |     |
|---------|-------------------|-----|--------|--------|------|-------|------|------|-------|-----|
| Copples | Coarse Fine Total |     | Coarse | Medium | Fine | Total | Silt | Clay | Total |     |
| 0.0     | 4.9               | 7.1 | 12.0   | 5.0    | 28.9 | 47.7  | 81.6 |      |       | 6.4 |

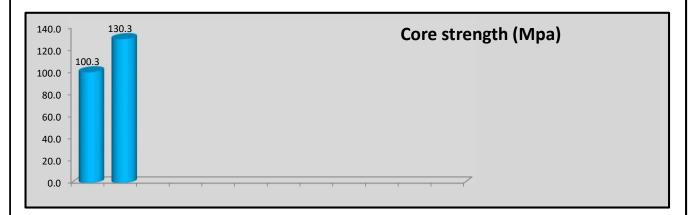
| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | 0.0986          | 0.1313          | 0.1609          | 0.2189          | 0.2869          | 0.3771          | 0.5100          | 1.4264          | 2.7128          | 6.7118          | 13.0360         |

| Fineness<br>Modulus | c <sub>u</sub> | C <sub>C</sub> |
|---------------------|----------------|----------------|
| 2.38                | 5.17           | 0.95           |

Tulloch Engineering Inc.

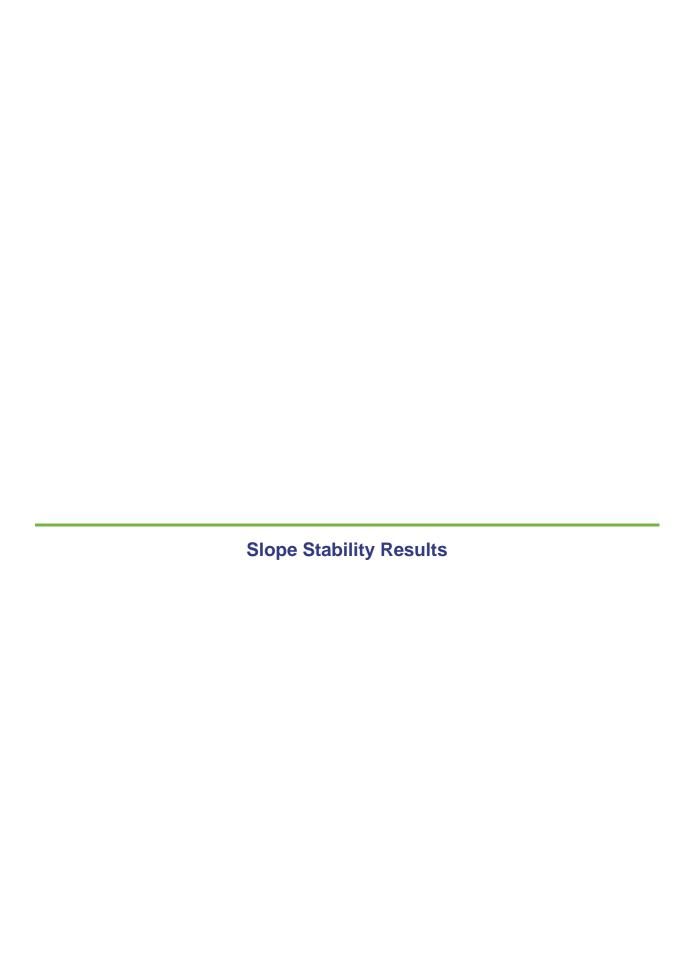


# CSA A283 Certified Laboratory for Concrete Testing CCIL Certified Laboratory for Aggregates and Asphalt Testing CSA/CCIL Certified Technicians

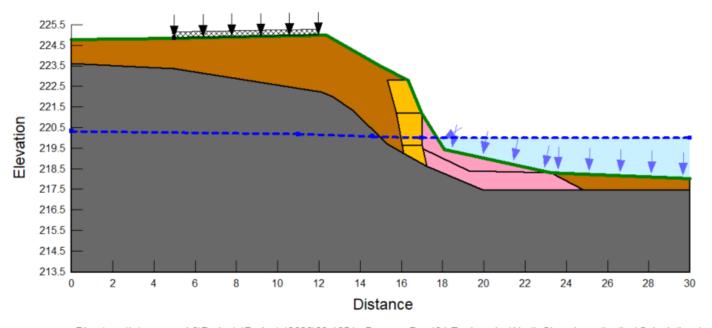





## **Rock Core Compressive Strength Report**


PROJECT:Burgess DamCONTRACT:20-1051DATE SAMPLED:September 9, 2020RUN BY:J. DraperDATE TESTED:February 25, 2022SOURCE:Boreholes

| Sample Location | Run<br># | Distance from top of run (cm) | Height (mm) | Diameter (mm) | L/D Ratio | Correction Factor | Peak Load<br>(lbs) | Compressive<br>Stength (Mpa) |
|-----------------|----------|-------------------------------|-------------|---------------|-----------|-------------------|--------------------|------------------------------|
| BH-01           | 1        | 81                            | 94.62       | 47.35         | 2.0       | 1.0               | 39700              | 100.3                        |
| BH-01           | 2        | 97                            | 94.68       | 47.41         | 2.0       | 1.0               | 51700              | 130.3                        |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |
|                 |          |                               |             |               |           |                   |                    |                              |




#### **REMARKS:**

**CLIENT:** Township of Muskoka Lakes



| Color | Name              | Material Model         | Unit<br>Weight<br>(kN/m°) | Effective<br>Cohesion<br>(kPa) | Effective<br>Friction<br>Angle (°) | Phi-B<br>(°) | Piezometric<br>Line |
|-------|-------------------|------------------------|---------------------------|--------------------------------|------------------------------------|--------------|---------------------|
|       | Bedrock           | Bedrock (Impenetrable) |                           |                                |                                    |              | 1                   |
|       | Gabion<br>Baskets | Mohr-Coulomb           | 20                        | 30                             | 38                                 | 0            | 1                   |
|       | Rockfill          | Mohr-Coulomb           | 20                        | 0                              | 38                                 | 0            | 1                   |
|       | Sandy Soil        | Mohr-Coulomb           | 19                        | 0                              | 35                                 | 0            | 1                   |



Directory: \\stoneycreek2\Projects\Projects\2020\20-1051 - Burgess Dam\01 Engineering\North Slope Investigation\Calculations\

CLIENT
Township of Muskoka Lakes

CONSULTANT

YYYY-MM-DD

2022-03-08

TULLOCH

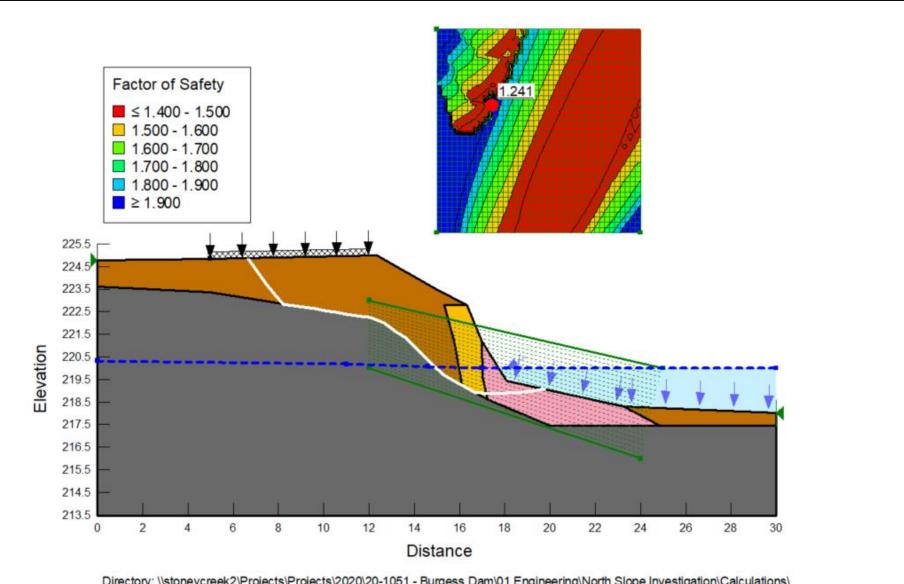
 YYYY-MM-DD
 2022-03-08

 PREPARED
 KC

 DESIGN
 KC

 REVIEW
 EG

 APPROVED
 GL


Burgess Dam – North Slope Investigation

TITLE

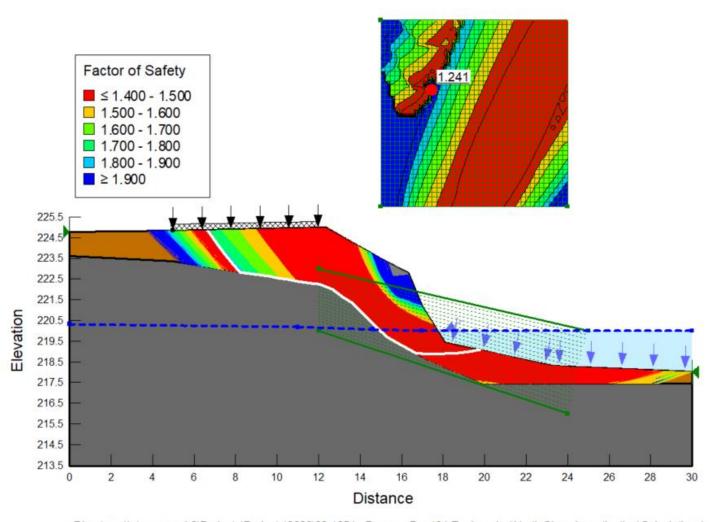
North Slope Geostudio LE Model Geometry and Parameters

 PROJECT No.
 Phase/Task
 Rev.
 Figure

 20-1051
 A
 G-1



Directory: \stoneycreek2\Projects\Projects\2020\20-1051 - Burgess Dam\01 Engineering\North Slope Investigation\Calculations\


Township of Muskoka Lakes

Burgess Dam – North Slope Investigation



| YYYY-MM-DD | 2022-03-08 |
|------------|------------|
| PREPARED   | KC         |
| DESIGN     | KC         |
| REVIEW     | EG         |
| APPROVED.  | Cl         |

| TITLE                       |               |      |        |
|-----------------------------|---------------|------|--------|
| North Slope<br>Geostudio LE | Model Results |      |        |
| PROJECT No.                 | Phase / Task  | Rev. | Figure |
| 20-1051                     | -             | Α    | G-2    |



Directory: \\stoneycreek2\Projects\Projects\2020\20-1051 - Burgess Dam\01 Engineering\North Slope Investigation\Calculations\

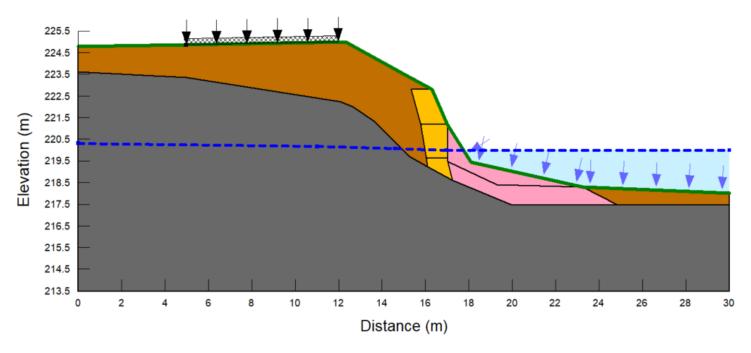
Township of Muskoka Lakes

YYYY-MM-DD 2022-03-08

CONSULTANT

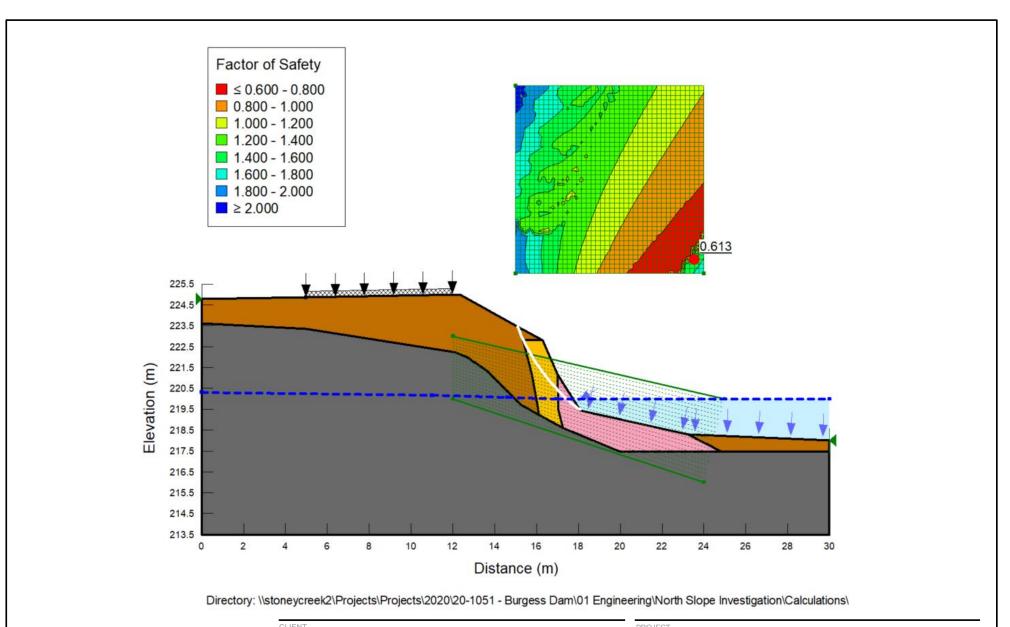
PREPARED KC DESIGN KC REVIEW EG APPROVED GL

Burgess Dam – North Slope Investigation


North Slope Geostudio LE Model Results

TITLE

PROJECT No. Rev. Phase / Task 20-1051 Α


Figure G-3

| Color | Name              | Material Model         | Unit<br>Weight<br>(kN/m³) | Effective<br>Cohesion<br>(kPa) | Effective<br>Friction<br>Angle (°) | Phi-B<br>(°) | Piezometric<br>Line |
|-------|-------------------|------------------------|---------------------------|--------------------------------|------------------------------------|--------------|---------------------|
|       | Bedrock           | Bedrock (Impenetrable) |                           |                                |                                    |              | 1                   |
|       | Gabion<br>Baskets | Mohr-Coulomb           | 20                        | 0                              | 38                                 | 0            | 1                   |
|       | Rockfill          | Mohr-Coulomb           | 20                        | 0                              | 38                                 | 0            | 1                   |
|       | Sandy Soil        | Mohr-Coulomb           | 19                        | 0                              | 35                                 | 0            | 1                   |



Directory: \\stoneycreek2\\Projects\\2020\20-1051 - Burgess Dam\\01 Engineering\\North Slope Investigation\\Calculations\

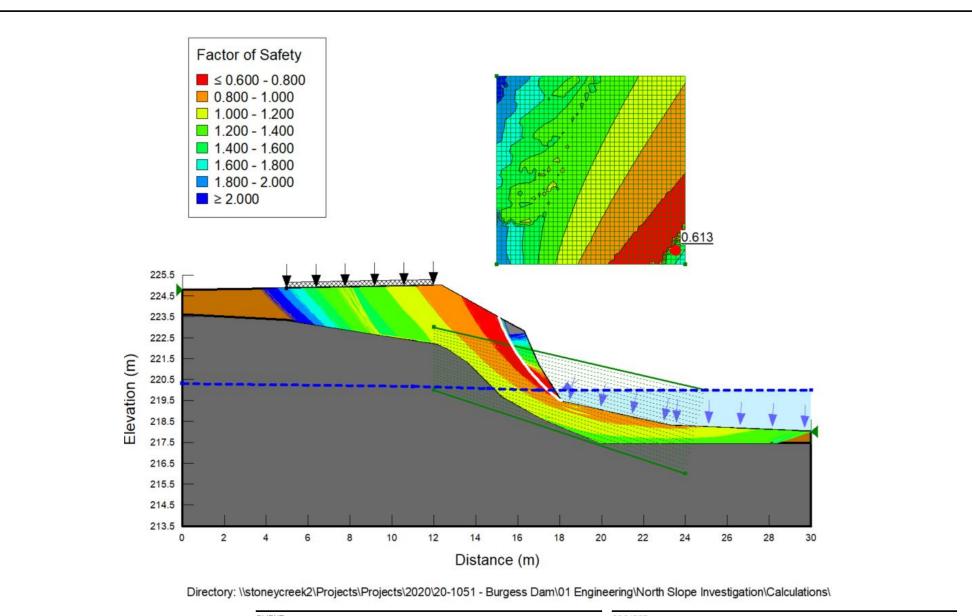
Burgess Dam – North Slope Investigation Township of Muskoka Lakes CONSULTANT YYYY-MM-DD 2022-03-08 North Slope - Failed Gabion Meshing PREPARED KC Geostudio LE Model Geometry and Parameters DESIGN KC REVIEW EG PROJECT No. Phase / Task Rev. 20-1051 G-4 APPROVED GL



Township of Muskoka Lakes

Burgess Dam – North Slope Investigation

CONSULTANT


| YYYY-MM-DD | 2022-03-08 |
|------------|------------|
| PREPARED   | KC         |
| DESIGN     | KC         |
| REVIEW     | EG         |
| APPROVED   | GI         |

North Slope – Failed Gabion Meshing Geostudio LE Model Results

| PROJECT No. | Phase/Task | Rev. |
|-------------|------------|------|
| 20-1051     | -          | Α    |

Figure

G-5



Township of Muskoka Lakes

Burgess Dam – North Slope Investigation



CONSULTANT

| YYYY-MM-DD | 2022-03-08 |  |  |
|------------|------------|--|--|
| PREPARED   | KC         |  |  |
| DESIGN     | KC         |  |  |
| REVIEW     | EG         |  |  |
| APPROVED   | GL         |  |  |

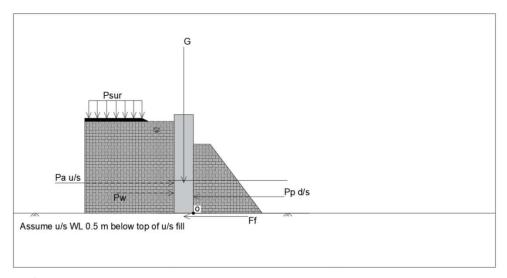
North Slope – Failed Gabion Meshing Geostudio LE Model Results

| 20-1051     | -            | Α    |
|-------------|--------------|------|
| PROJECT No. | Phase / Task | Rev. |

Figure **G-6** 

# **Givens and Assumptions**

## **Geometry Input Parameters**


| Max. Wall Height          | Н    | 3.66 m |
|---------------------------|------|--------|
| Dam Base width            | t    | 0.30 m |
| Height of the u/s fill    | hfus | 3.35 m |
| Height of the d/s fill    | hfds | 2.44 m |
| Height of u/s water       | hw   | 3.35 m |
| Traffic Surcharge Loading | Psur | 20 kPa |

### **Soil/Rock Input Parameters**

| Unit weight-Unreinforced Concrete          | γс         | 23.58 kN/m³           |
|--------------------------------------------|------------|-----------------------|
| Unit weight-u/s and d/s Fill               | γf         | 19 kN/m³              |
| Unit weight of water                       | $\gamma w$ | 9.8 kN/m <sup>3</sup> |
| Friction angle- u/s and d/s fill           | φ'f        | 35 degree             |
| Friction angle- Concrete-to-rock interface | φ'c-R      | 38 degree             |
| Active Earth Pressure Coeff.               | ka         | 0.27 -                |
| Passive Earth Pressure Coeff.              | kp         | 3.69 -                |



# WL 0.5m below Top of U/S Fill - U/S to D/S Slide Direction

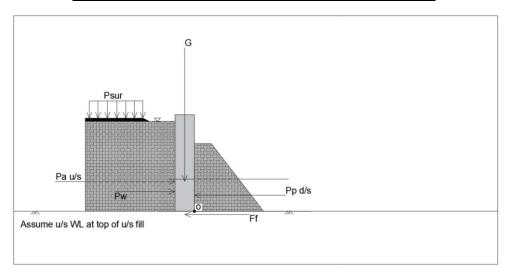


\*N.T.S

#### **Calculation**

| Force (kN)                      | FBD ID | Force (kN) | Moment Arm<br>to "O" (m) | Moment<br>(kN.m) |
|---------------------------------|--------|------------|--------------------------|------------------|
| Traffic Surcharge Load          | Pt     | 5.42       | 1.68                     | 9.09             |
| u/s Water Pressure              | Pw     | 39.88      | 0.95                     | 37.92            |
| u/s Active Earth Pressure       | Pa u/s | 28.94      | 1.12                     | 32.34            |
| d/s Passive Earth Pressure      | Pp d/s | 208.44     | 0.81                     | -169.42          |
| Gravity Force of Concrete dam   | G      | 26.29      | 0.15                     | -4.01            |
| Uplift Force                    | n/a    | 0.00       | 0.00                     | 0.00             |
| Friction Force-Concrete-to-Rock | Ff     | 14.27      | 0.00                     | 0.00             |

#### Result


| Sliding | $\Sigma$ Applied Force (kN) | $\Sigma$ Resistive Force (kN) | FOS | ОК | Required<br>FOS |
|---------|-----------------------------|-------------------------------|-----|----|-----------------|
|         | 74.2                        | 222.7                         | 3.0 |    | 1.5             |

| Overturning | $\Sigma$ OT Moment | ∑ Anti–OT     | FOS | ОК | Required |
|-------------|--------------------|---------------|-----|----|----------|
|             | (kN*m)             | Moment (kN*m) |     |    | FOS      |
|             | 79.4               | -173.4        | 2.2 |    | 2.0      |

Calculated By: KC Checked By: EG



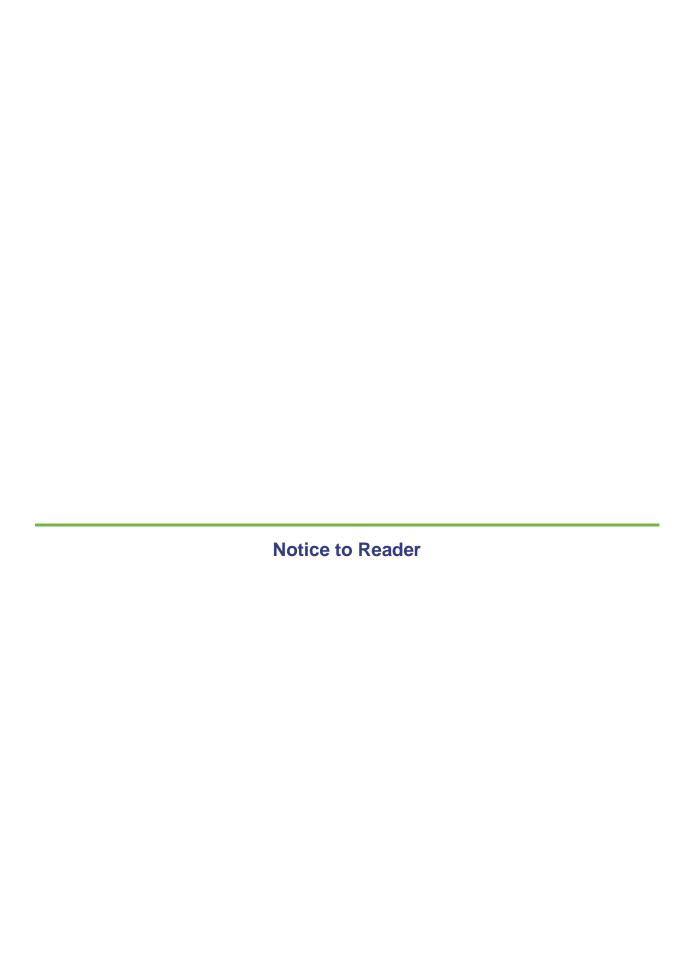
# WL at Top of U/S Fill - U/S to D/S Slide Direction



\*N.T.S

#### Calculation

| Force (kN)                      | FBD ID | Force (kN) | Moment Arm<br>to "O" (m) | Moment<br>(kN.m) |
|---------------------------------|--------|------------|--------------------------|------------------|
| Traffic Surcharge Load          | Pt     | 5.42       | 1.68                     | 9.09             |
| u/s Water Pressure              | Pw     | 39.88      | 0.95                     | 37.92            |
| u/s Active Earth Pressure       | Pa u/s | 28.94      | 1.12                     | 32.34            |
| d/s Passive Earth Pressure      | Pp d/s | 208.44     | 0.81                     | -169.42          |
| Gravity Force of Concrete dam   | G      | 26.29      | 0.15                     | -4.01            |
| Uplift Force                    | n/a    | 0.00       | 0.00                     | 0.00             |
| Friction Force-Concrete-to-Rock | Ff     | 14.27      | 0.00                     | 0.00             |


#### Result

| Sliding | $\Sigma$ Applied Force (kN) | $\sum$ Resistive Force (kN) | FOS | ОК | Required<br>FOS |
|---------|-----------------------------|-----------------------------|-----|----|-----------------|
|         | 89.4                        | 222.7                       | 2.5 |    | 1.5             |

| Overturning | $\Sigma$ OT Moment | ∑ Anti–OT     | FOS<br>1.7 | Not OK | Required |
|-------------|--------------------|---------------|------------|--------|----------|
|             | (kN*m)             | Moment (kN*m) |            |        | FOS      |
|             | 103.0              | -173.4        |            |        | 2.0      |

Calculated By: KC Checked By: EG





#### **NOTICE TO READER**

This factual Report has been prepared by TULLOCH Engineering Inc. ('TULLOCH') for the sole and exclusive use of the Township of Muskoka Lakes. (the 'Client') to support the rehabilitation of the north slope located downstream of the Burgess 1 Dam facility along River Street (the 'Development') in Bala, Ontario (the 'Site'). The Report shall not be used for any other purpose, or provided to, relied upon or used by any third party without the express written consent of TULLOCH.

A limited number of boreholes were advanced at the Site; and as such, the information collected and presented herein applies to the borehole locations only. The subsurface conditions between boreholes can change and accordingly any use of the data contained in this Report should take into consideration the nature of the materials and potential variation between boreholes.

This Report contains opinions, conclusions and recommendations made by TULLOCH using professional judgment and reasonable care for the purpose preliminary assessment for the Development. Use of or reliance on this report by the Client is subject to the following conditions:

- a) the report being read in the context of and subject to the terms of the Engineering Services
  Agreement for the Work, including any methodologies, procedures, techniques, assumptions
  and other relevant terms or conditions specified or agreed therein;
- b) the report being read in its entirety. TULLOCH is not responsible for the use of portions of the report without reference to the entire report;
- the conditions of the site may change over time or may have already changed due to natural forces or human intervention, and TULLOCH takes no responsibility for the impact that such changes may have on the accuracy or validity of the observations, conclusions and recommendations set out in this report;
- d) the classification of soils and rocks in this report is based on commonly accepted methods. However, the classification of geologic materials and the boundaries between subsurface layers involves judgement. Boundaries between different soils layers may also be transitional rather than abrupt. TULLOCH does not warrant or guarantee the exactness of these descriptions and boundaries.
- e) the subsurface conditions must be verified by a qualified geotechnical engineer during construction to ensure that the borehole data presented herein is representative of the actual site conditions so that the design recommendations contained herein remain valid; and
- f) the report is based on information made available to TULLOCH by the Client or by certain third parties; and unless stated otherwise in the Agreement, TULLOCH has not verified the accuracy, completeness or validity of such information, makes no representation regarding its accuracy and hereby disclaims any liability in connection therewith.

This report has been prepared with the degree of care, skill and diligence normally provided by engineers in the performance of comparable services for projects of similar nature.